Mini-projet 3 : (IoT)

Le protocole **MQTT** (Message **Q**ueuing **T**elemetry **T**ransport) est un protocole de connectivité de machine-to-machine (**M2M**) utilisé dans l'**IoT**(Internet of Things). Il s'agit d'un système de publication et d'abonnement (publish and subscribe) léger où vous pouvez publier et recevoir des messages en tant que client, avec une faible bande

passante. C'est donc la solution parfaite pour les applications de l'Internet des objets. Ci-après, les concepts de base :

Broker	Topic(sujets)	Publish/Subscribe	Exemple :
Le broker(courtier/	Le Topic permet de spécifier où	(Publier / s'abonner)	-Le client1 MQTT
intermédiaire) est	vous souhaitez publier le	un objet peut publier	publie sur un
principalement chargé de	message.	un message sur un	sujet(Topic).
recevoir tous les messages,	Messages	sujet, ou il peut être	-Le client2 MQTT est
de les filtrer, de décider qui	Les messages	abonné à un sujet	abonné au même sujet
les intéresse et de publier	(commandes/données) sont les	particulier pour	que le client1 MQTT.
le message à tous les	informations que vous souhaitez	recevoir des	-Ainsi, le client2 MQTT
clients abonnés.	échanger entre vos appareils.	messages	reçoit le message.

Principe :

Etape 1: <u>Montage</u> : En utilisant les composantes ci-dessous , réaliser un montage permettant d'allumer les LEDS et d'actionner le moteur suivant la température capturée. La capture de la température doit se faire sur le pin4. Les LED rouge, verte et bleue à brancher respectivement sur les pin 5,18,19 et le moteur sur le pin 15

2X ESP32	3X Resistance 220Ω	Lampe LED rouge	Lampe LED verte	Lampe LED bleue	Capteur de température et	
Carte ESP32					a numidite DH111	Micro moteur 716 +hélice

Remarque: On doit aussi téléverser la bibliothèque mqtt.py téléchargeable au lien :

https://raw.githubusercontent.com/pycom/pycom-libraries/master/examples/mgtt/mgtt.py On propose l'algorithme suivant : Traduire l'algorithme précédent en NB : Il vaut mieux connecter le moteur au pin 1 résistance 1kΩ 15 avec le montage suivant : Si temp<14 alors allumer LED Bleue MicroPython : 1 diode Montage: Sinon si temp<26 alors 1 transistor BC547 Μ Allumer LED Verte Colle VCC 1kΩ Sinon Pin15• Allumer LED Rouge GND Actionner le moteur 3 Emitter Finsi **Etape 4:** Installation d'une application mobile : (Client3 MQTT) IoT MQTT HOTT ' 📟 🔚 🍘 🖇 🕲 ". 🗐 🖬 93% 📖 16:15 Installer l'application mobile IoT MQTT Dashbord à partir Dashboard

X Subscription CREATE

Friendly name
TempESP32
Topic
maison/temperature
Unit

Installer l'application mobile **IoT MQTT Dashbord** à partir du **Play Store** pour se connecter au broker et s'abonner au Topic pour recvoir la température capturé sur son smartphone . **NB :** Pour se connecter au broker, utiliser les paramètres suivants : *server="farmer.cloudmqtt.com", port=10193, username="fizwwsid", password="RpBWoH3wZFy2"*

